- . 18


(xz)

 

, 0 < I(, Z) < 4 .

4. X1, X2,..., n - 0 1.

n

Z=åXi , (1) = 1,

i=1

 

n-1 n

H(X1/Z)= -å (1=0, Z=k) logP(X=0/Z=k)- å(1=1, Z=k) logP(X=l /Z=k)

k=o k=1

 

n->¥, H(X1/Z) = (1)(1 + O(1)), , I(X1/Z)=O(l).

.

5. Z:=XÅY, X Y - ,Å - mod 2, Z X Y.

6. If X=l then Y=l. Î{0,1}, X (=0)=(==1)=1/2, Y=0, ()=1.

H(X/Y)= å (, ) logP(x/y)=0.

(x,y)

, I(, Y) = 1. , .

7. If(=1) (Y=l) then Z:=l.

H(X)=H(Y)=l, Z=l => X=l=Y

X=0 c P=2/3 }

Z = 0 => }

X=1 c P=1/3 }

 

Hz(X)×O,7. X Z

I(Z, ) 0,3.

X1, 2,...,n - () (), Y=(Y1,...,Ym) - , I(Xi,Y) - i, , . I(Xi,Y)/(1) - "" X1. l> "", i=l.....n,

I(Xi,Y)/(i)<l,

Y.

1.4. .

, , .