Теоретические основы защиты информации


Теоретические основы защиты информации - стр. 19


Ясно, что в денежном выражении затраты на защиту не должны превышать возможные потери. Для решения этих задач в информацию вводятся вспомогательные структуры - ценность информации. Рассмотрим примеры.

1 . Аддитивная модель. Пусть информация представлена в виде конечного множества элементов и необходимо оценить суммарную стоимость в денежных единицах из оценок компонент. Оценка строится на основе экспертных оценок компонент, и, если денежные оценки объективны, то сумма дает искомую величину. Однако, количественная оценка компонент невсегда объективна даже при квалифицированной экспертизе. Это связано с неоднородностью компонентв целом. Поэтому делают единую иерархическую относительную шкалу (линейный порядок, который позволяет сравнивать отдельные компоненты по ценности относительно друг друга). Единая шкала означает равенство цены всех компонент, имеющих одну и туже порядковую оценку.

Пример 1 01,...,0n - объекты, шкала 1<...<5. Эксперты оценили (2, 1, 3,...., 4) - вектор относительных

ценностей объектов. Если есть цена хотя бы одного объекта, например, C1=100 руб., то вычисляется оценка одного балла     С1/l. = 50 руб.,

где l - число баллов оценки первого объекта, и вычисляется цена каждого следующего объекта: C2=50руб., C3=150 руб. и т.д. Сумма дает стоимость всей информации. Если априорно известна цена информации, то относительные оценки в порядковой шкале позволяют вычислить цены компонент.

2. Анализ риска. Пусть в рамках аддитивной модели проведен учет стоимости информации в системе. Оценка возможных потерь строится на основе полученных стоимостей компонент, исходя из прогноза возможных угроз этим компонентам. Возможности угроз оцениваются вероятностями соответствующих событий, а потери подсчитываются как сумма математических ожиданий потерь для компонент по распределению возможных угроз.

Пример 2. Пусть О1,...,Оn - объекты, ценности которых С1,...,Сn. Предположим, что ущерб одному объекту не снижает цены других, и пусть вероятность нанесения ущерба объекту Оi равна рi, функция потерь ущерба для объекта Оi равна




Начало  Назад  Вперед



Книжный магазин